Modified Green-Ampt Method Tom Nye, P.E., in EPA SWMM Ph.D. Mitch Heineman, P.E., D.WRE EWRI 2016 October 15-16, 2015 CDM Smith

Overview

- History
 - Implementation in SWMM
 - Examples
 - Formulation
- Algorithm improvement
 - Anomalies
 - Identifying the error
 - Resolution
- Example

Green-Ampt equation (1911)

$$f_p = K_s \left(1 + \frac{\psi_s \theta_d}{F} \right)$$

Eqn. 4-27

- f_p = infiltration capacity, (in/hr)
- k_s = saturated hydraulic conductivity (in/hr)
- ψ_{θ} = capillary suction (in)
- θ_{d} = initial moisture deficit
- F = cumulative infiltration volume (in)

Green-Ampt-Mein-Larsen (GAML)

• 1973: Mein-Larson formulation for steady rainfall Prior to saturation $F < F_s$, f = i. Saturation occurs when

$$F_s = \frac{K_s \psi_s \theta_d}{i - K_s} > \mathsf{F}$$

- 1978: Chu adaptation for unsteady rainfall
- 1979: Coded into SWMM 3 by R. Mein
- 1993-2002: Minor refactoring by W. Huber
- 2004: Re-coded in C by L. Rossman

Tweaks 2005-2010

- Corrections to the way water volume in the upper soil zone is depleted during dry periods. 5.0.06 (2005)
- The point at which the time to drain the upper soil zone is first calculated was moved from time 0 to the time of first rainfall. 5.0.12 (2008)
- Infiltration rate corrected for the case when surface becomes saturated part way through current time step. 5.0.14 (2009)
- Explicitly include effect of ponded water depth on infiltration rate. 5.0.015 (2009)
- Infiltration rate no longer allowed to be less than smaller of saturated hydraulic conductivity and available surface moisture. 5.0.21 (2010)

Model Comparison

- Project technical memo
 - XPSWMM vs. EPA SWMM
 - Hydrology matches for Horton and NRCS infiltration, but not for Green-Ampt
 - XP Solutions noted that under certain conditions, EPA SWMM does not vary for changing capillary suction; CDM Smith independently confirmed this result

Identical subbasins

- 50 acres
- 1000 ft width
- 1% slope
- Zero imperviousness
- 0.25 pervious N _____
- 6 inch NRCS Type II hyetograph
- Vary Ks, IMD, Su to pinpoint anomaly

Test model SWMM 5.1.006

Subcatchment Ksat35 Precipitation (in/hr)

Sensitivity Analysis

Infiltration rate

Subcatchment Ksat15 Infiltration (in/hr)
 Subcatchment Ksat25 Infiltration (in/hr)
 Subcatchment Ksat35 Infiltration (in/hr)

Sensitivity Analysis

Sensitivity analysis

Sensitivity Analysis

SWMM 5.1.010 vs SWMM 4.4

- Differences in the code between earlier and current versions of SWMM
 - Event separation time initialization
 - Solver convergence limits
- Base Green-Ampt infiltration in SWMM 5.1.010 revises the methodology to match SWMM 4

Were there issues in SWMM 4? SWMM 3?

- At this point Lew and others considered the problem solved. But...
- Our concerns were with the higher K_s values producing too little infiltration
- Now all K_s values in this range match the infiltration rate

Were there issues in SWMM 4? SWMM 3?

- Sensitivity test with three simple catchments, but varying rainfall
 - K_s = 0.15 in/hr, IMD = 0.25, Su = 8 in
 - "low" rainfall: 0.1 in/hr
 for 5 hours, then 0.3
 in/hr
 - "15" i = K_s = 0.15 in/hr
 for 5 hours, then 0.3 in
 /hr
 - "high" rainfall: 0.3 in/hr for the entire run

Were there issues in SWMM 4? SWMM 3?

The Issue

- The algorithm has two parts:
 - Mein-Larson estimate of infiltration
 - Soil moisture accounting
- In continuous simulation, soil moisture accounting drives estimate moisture deficit
- In NRCS design storm, moisture deficit driven to zero by low intensity rainfall well before peak

The Solution

infil - F = 0.0;

return ia;

 Code revised so initial time remaining until next wet period set to large value

//(5.1.008)

//(5.1.010)

- At first time period where $i > K_s$, TR set as usual
- Since original method had been used for 30 years, we needed to research it more:
 - Followed up with Wayne Huber

```
- Wayne Huber contacted Russell Mein
// --- rainfall does not exceed Ksat
if ( ia <= ks )
{
    dF = ia * tstep;
    infil->F += dF;
    infil->Fu += dF;
    infil->Fu = MIN(infil->Fu, Fumax);
    if ( modelType == GREEN_AMPT && infil->T <= 0.0 )
    {
        infil->IMD = (Fumax - infil->Fu) / infil->Lu;
    }
}
```

Same test case – Modified GAML

Test Case: Memphis South Cypress Creek

13 mi² with 179 subcatchments from 6.5 to 187.7 acres, averaging 46 acres

- 24% impervious
- Elev: 190 ft to 380 ft
- Soils from sandy loams to clay;
 88% classified as B (Memphis Silt Loam)

September 2014 Storm

- 4.8-inch storm
- Precipitation Peak Intensity ~ 1 inch in 15-1 0.9 mintes 0.8 0.7 Dry Depth (in) 0.5 0.4 antecedent condition 0.3 0.2 0.1 0 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 Time (hrs)

September 2014 Storm

- Stream Gage at Neely Road

100-Year Storm

- 8-inch storm

100-Year Storm

Without infiltration cutoff at Ksat, infiltration increases 15% to 20% within the subbasins

Code revisions

Build 5.1.007 (9/15/2014)

Engine Updates:

- 7. The initial cumulative infiltration into the upper soil zone for Green-Ampt infiltration had been incorrectly set to the maximum value instead of zero.
- All of the Green-Ampt infiltration functions were re-factored to make the code easier to follow.

Build 5.1.010 (08/05/15)

Engine Updates:

 A modified version of Green-Ampt infiltration (MODIFIED GREEN AMPT) was added that no longer redistributes upper zone moisture deficit during low rainfall events. The original authors of SWMM's Green-Ampt model have endorsed this modified version. It will produce more infiltration for storm events that begin with low rainfall intensities, such as the SCS design storm distributions.

Conclusions

"I am impressed and pleased that there are people out there who keep checking model output. Unfortunately most model results are accepted by users without question" - Russel Mein